- Как подключить лямбда зонд 4 провода
- Инструкция по установке универсального датчика кислорода
- Как проверить лямбда зонд тестером с 4 проводами
- Что такое лямбда зонд, принцип действия и его виды
- Устройство лямбда зонда
- Основные причины неисправностей лямбда-зонда и последствия его поломки
- Проверка лямбда зонда с 4 проводами тестером. Методы проверки ЛЗ
- Цепь датчика кислорода
- Что включает в себя цепь датчика кислорода
- Возможные поломки 4 проводов лямбды
- Схема подключения лямбда зонда: что нужно знать?
- Устройство и схема подключения датчика лямбда зонда/кислорода, причины поломок
- Описание и назначение устройств
- В каких системах применяются
- Классификация, устройство и принцип действия
- Циркониевые
- Принцип работы
- Титановые
- Широкополосные – LSU датчики
- Плюсы
- Методы диагностики
- Мультиметром
- Осциллографом
- Основные причины выхода из строя
- Нюансы подключения
- Советы и рекомендации
- Подключение лямбда зонда 4 провода ваз
- Чем и как можно проверить лямбду
- Проверка лямбда-зонда тестером:
- Проверка напряжения в цепи подогрева
- Проверка нагревателя лямбда зонда
- Проверка опорного напряжения датчика кислорода
- Таблица распиновки датчиков лямбда-зонда
- VESKO-TRANS.RU
- Как Подключить Универсальный Лямбда Зонд 4 Провода
- Установка разъема на универсальный лямбда-зонд.
- Как подключить подогреваемый лямбда-зонд
Как подключить лямбда зонд 4 провода
Инструкция по установке универсального датчика кислорода
Инструкция по установке универсального датчика кислорода
Установка должна производиться только квалифицированным специалистом в специализированной ремонтной мастерской ! Инструкция приведена только в ознакомительных целях.
Пожалуйста, внимательно прочитайте эту инструкцию перед снятием кислородного датчика с вашего автомобиля
ИНСТРУКЦИЯ ПО УСТАНОВКЕ: (смотрите иллюстрации)
Установка должна производиться только квалифицированным специалистом в специализированной ремонтной мастерской ! Инструкция приведена только в ознакомительных целях.
ШАГ 1. Запомните, как проложена проводка установленного датчика. Таким же образом нужно будет проложить позже проводку универсального датчика. Отсоедините штекер старого датчика от электроники автомобиля (не размыкайте и не перерезайте проводку самого датчика). Демонтируйте старый датчик соответствующим инструментом.
ШАГ 2. Сравните старый датчик с универсальным датчиком. Проводка универсального датчика должна быть как мин. 40мм короче проводки старого датчика. При необходимости
соответственно укоротите проводку универсального датчика.
ШАГ 3. Теперь укоротите проводку универсального датчика таким образом, чтобы каждый отдельный провод был короче предыдущего на 40мм, начиная с любого провода.
ШАГ 4. Теперь укоротите проводку от разъема старого датчика.
ШАГ 5. После этого наденьте на каждый отдельный провод спец. изоляционную трубку, прилагаемую к комплекту универсального датчика.
ШАГ 6. На каждый отдельный провод наденьте водозащитную изоляцию. Обратите внимание на то, что широкий конец водозащитной изоляции показывает на конец провода (место соединение).
ШАГ 7. С помощью подходящего инструмента (изоляционные кусачки) снимите 8мм изоляции с каждого конца провода. Теперь наденьте на провода универсального датчика контактное соединение и с помощью соответствующего инструмента сожмите конструкцию. Следите за тем, чтобы не торчали неизолированные провода, и соединение было безупречно.
ШАГ 8. Еще раз обратите внимание на таблицу соответствия проводки и убедитесь, что провода подобраны правильно. Теперь соедините провода старого датчика с проводкой универсального датчика, надев на провода контактное соединение. И здесь убедитесь в том, чтобы не торчали неизолированные части проводки, и сожмите соединение соответственно. Для упрощения процесса мы рекомендуем начинать с самого короткого провода универсального датчика.
ШАГ 9. Подвиньте водозащитную изоляцию к крепежному соединению с двух концов проводки. После этого наденьте специальную изоляционную трубку на контактное соединение так, чтобы трубка полностью закрывало соединение и водозащитную изоляцию.
ШАГ 10. Используйте фен с горячим воздухом для закрепления изоляционной трубки посередине над контактным соединением. Для того, чтобы обеспечить должную гидроизоляцию проводки, водозащитная изоляция должна находится внутри изоляционной трубки.
ШАГ 11. Снимите защитный колпачок универсального датчика и монтируйте датчик. Используйте усилие: М18 = 35-58 Нм
Проводка датчика должна быть проложена так же, как была проложена старая проводка. Оригинальные крепежи должны быть зафиксированы. Избегайте прикосновения проводки с горячими частями автомобиля (Коллектор, нейтрализатор).
Если необходимо, используйте крепежи для прикрепления проводов друг к другу.
Таблица соответствия проводки
Производитель датчика
Нагревательный провод (х2)
(только на 3-4 контактных датчиках)
Сигнальный провод
Массовый провод (только на 2,4 контактных датчиках)
Как проверить лямбда зонд тестером с 4 проводами
Современный автомобиль – это электромеханическая система, которая состоит из множества деталей и узлов, что связаны между собой совокупностью различных датчиков. Эти датчики поддерживают рабочее состояние авто и обеспечивают его продуктивную работу. Сегодня в этой статье мы будем вести речь про датчик кислорода (лямбда зонд). В частности ответим на вопрос как проверить лямбда зонд с 4 проводами тестером. Это самый распространенный тип датчика и он весьма важен.
Перед тем, как приступать к изучению и тестированию работоспособности ЛЗ мы рекомендуем кратко изучить его конструктивные особенности, виды и принцип действия.
Что такое лямбда зонд, принцип действия и его виды
Итак, датчик воздуха – это небольшое устройство, которое установлено в выпускном коллекторе любого современного автомобиля и служит для оценки концентрации остаточного кислорода в отработавших газах. Благодаря показаниям этого устройства компьютерный блок вашего автомобиля получает данные на основе которых производит приготовление горючей смеси. Лямбда зонд учитывает остаточную концентрацию кислорода в сгоревшем топливе и подает сигнал на электронику о том, что вновь поступающую горючую смесь нужно либо обогатить, либо обеднить воздухом. Разумеется то, что при любой неисправности лямбда зонда может пострадать работоспособность двигателя машины.
Помни! Для сгорания 1 кг. смеси топлива и воздуха, необходимо затратить около 15-ти кг. кислорода.
Устройство лямбда зонда
Современный датчик воздуха представляет собой небольшое конструктивное устройство внутри которого имеется ряд взаимосвязанных деталей.
- Металлический корпус на котором имеется резьба. Она предназначена для фиксации датчика в посадочном отверстии;
- Изолятор изготовленный из керамики;
- Уплотнитель в виде кольца;
- Проводники;
- Защитная оболочка с отверстием для вентиляции;
- Контакт;
- Керамический наконечник;
- Электрический нагреватель;
- Отверстие для выпускного газа;
- Стальная оболочка.
Как правило, начало измерений отработавших газов наступает при температуре 310-400 градусов. Именно при такой температуре специальный наполнитель в датчике обретает электропроводимость. Пока температура не достигла нужного значения, электронный блок управления автомобиля берет показания с других датчиков, а уже потом с лямбда зонда. Особенность его работы заключается в том, что выхлопные газы и атмосферный воздух разделены емкостью с токогенерирующим составом. В следствии определенных химических воздействий на эту емкость со стороны выхлопа и со стороны воздуха возникает разница концентрации кислорода на основе чего вырабатываться электрический потенциал. Значения этого потенциала отправляются на блок управления автомобилем.
Все датчики кислорода делятся на четыре типа в зависимости от количества проводов в их конструкции:
1. Однопроводные;
2. Двухпроводные;
3. Трехпроводные;
4. Четырехпроводные.
Все вышеперечисленные лямбда зонды бывают узкополосные и широкополосные.
Основные причины неисправностей лямбда-зонда и последствия его поломки
После того, как мы определились с понятием и особенностями работы датчика кислорода, можно сделать вывод, что он играет ключевую функцию в нормальной работе двигателя внутреннего сгорания. Так что же может привести к поломке лямбда зонда и выхода его из строя? Существуют два аспекта в этом вопросе: внешние факторы и внутренние о которых читайте ниже.
- Протекание в корпус датчика охлаждающей жидкости или же тормозной;
- Уход за датчиком средствами, которые не предназначены для таких целей;
- Некачественное топливо с чрезмерным содержанием свинца;
- Перегрев датчика, который также случается при использовании плохого топлива.
После того, как лямбда зонд вышел из строя ваш автомобиль начнет подавать определенные признаки:
- Существенные рывки при движении;
- Чрезмерные расход топлива;
- Плохая работа катализатора;
- Плавающие обороты двигателя;
- Излишки токсических отходов в отработавших газах.
Серьёзность всего вышеперечисленного должна наталкивать водителя на проверку лямбда зонда практически каждые 10 тыс. км. Его полная замена желательна после каждых 40 000 км пробега.
Проверка лямбда зонда с 4 проводами тестером. Методы проверки ЛЗ
Итак, мы подошли к тому вопросу, который волнует каждого автолюбителя: как же проверить датчик лямбда зонд в домашних условиях? Для этого вам понадобится обычный тестер (мультиметр) или вольтметр.
Первым делом необходимо прогреть двигатель, после чего произвести замеры сопротивления на проводах подогревателя. Как правило, это два белых провода полярность между которыми можно не соблюдать. Нормальное сопротивление между ними должно равняться от 2 до 10-ти Ом. Если это значение другое, то следовательно датчик неисправен.
Идем далее. Теперь нужно минусовой провод тестера подключить на корпус двигателя. При этом плюсовой контакт подключите к сигнальному проводу самого датчика. Как правило это будет черный провод. На прогретом двигателе нажмите на педаль газа и наберите обороты до 3000 об/мин. Удерживайте педаль в этом положении около трёх минут. В это время производится прогрев лямбда зонда. Теперь вы можете проверить включение датчика кислорода.
Напряжение между корпусом двигателя и сигнальным (черным проводом) детали должно колебаться в районе от 0,2 до 1 вольта. За каждые прошедшие 10 секунд времени датчик должен включаться около 10-ти раз. В тех случая когда тестер будет показывать 0,4-0,5 вольта и не будет производиться включение, то можно сделать вывод о неисправности лямбда зонда.
Также вам нужно знать о том, что при резком нажатии на педаль газа тестер должен показывать напряжение около 1 вольта. При резком отпускании педали – ноль вольт.
Цепь датчика кислорода
Датчик кислорода (также называемый лямбда-зондом) служит для проверки содержания кислорода в отработанных газах, образованных двигателем внутреннего сгорания. Экологические нормы в мире постоянно ужесточаются, и производители зачастую ставят даже дублирующие датчики, чтобы очистка выхлопа была еще эффективнее.
Чаще всего кислородный датчик представляет собой гальваническую систему, в основе которой лежит твердотельный электролит (его материалы могут быть разными). Когда температура устройства превышает 300˚C, считается, что электролит находится в функциональном режиме. Название λ-зонд выбрано, поскольку греческая буква λ используется для обозначения коэффициента содержания кислорода в ДВС.
Что включает в себя цепь датчика кислорода
Наиболее распространенный тип зонда — циркониевый, то есть такой, где диоксид циркония выступает в роли твердотельного электролита. Циркониевый наконечник для улучшенной проводимости кислорода покрыт тонким слоем оксида иттрия. Внутри и снаружи иногда также наносят прослойку платины — она отлично справляется с ролью электродов.
Лямбда включает в себя:
- Сигнальный кабель и провод, отвечающий за питание нагревателя.
- Корпус из стали, сопряженный с кожухом, резьба которого вставляется в гнездо выхлопной трубы.
- Контактная пластинка соединения провода нагрева.
- Нагревательный элемент.
- Электролит, оборудованный внутри и снаружи электродными пластинками.
- Керамическая теплоизоляция.
- Поверхность, отвечающая за прохождение контакта.
- Корпус из металла, через специальные отверстия в котором проходят выхлопные газы.
Принцип работы следующий. Внутри рабочего элемента располагается воздух, уровень кислорода в котором принимается за эталон при условии давления, которое он оказывает на стенки на нагреве не менее 350˚С. Далее отработанные газы взаимодействуют с платиновым электродом, и с этого момент проницаемость становится не эталонной, а переменной, в зависимости от того, сколько кислорода содержит выхлоп. Поскольку ионы кислорода склонны перемещаться из высокого в низкое давление, на электродах возникает разница потенциалов.
По схожему алгоритму работают и титановые датчики. Также существуют широкополосные — LSU датчики, которые подают сигналы более высокой точности.
Возможные поломки 4 проводов лямбды
Электрическая цепь, в которой работает кислородный зонд, устроена достаточно сложно; неудивительно, что время от времени могут случаться неисправности более или менее серьезного уровня. Примеры таких поломок:
- Нет напряжения на подогревательных контактах.
- Появляется ошибка Р0134 на приборной панели (цепь датчика кислорода до нейтрализатора неактивна).
- Появляются ошибки Р0130, Р0131, Р0132 или Р0133, связанные с нейтрализатором, временем отклика и уровнем сигнала.
Лямбда зонд имеет 4 провода, отвечающих за разные функции, и если они неисправны, то автомобиль сигнализирует об этом указанными ошибками. Разберем подробнее, как по коду ошибки определить, на каком именно этапе работы датчика возникает неисправность:
- Код Р0130: мотор проработал около 10 минут — за это время кислородный зонд успевает прогреться; сигнал управления нагревателем той же формы, что сигнал УДК; напряжение сигнала УДК от 0,6 до 1,5 В, а ДДК — менее 0,1 В, либо напряжение сигнала УДК 60-400 до мВ, а ДДК — более 0,5 В.
- Код Р0131: мотор проработал около 10 минут до нагрева, напряжение сигнала холодного УДК ниже 60 мВ на протяжении пяти секунд, либо напряжение сигнала прогретого УДК меньше 60 мВ на протяжении десяти секунд и напряжение сигнала ДДК более 0,5 В.
- Код Р0132: мотор проработал около 10 минут, напряжение сигнала УДК на протяжение пяти секунд более 1,3 В.
- Код Р0133: период сигнала УДК превышает две секунды; другие коды отсутствуют; нейтрализатор прогрет до надлежащей температуры; нагрузка RL от 15 до 50 %; после отключения продувки адсорбера прошло свыше десяти секунд; частота вращения коленчатого вала 1440-2880 оборотов за минуту.
- Код Р0134: мотор проработал около 10 минут, напряжение сигнала в течение пяти секунд удерживалось в промежутке между 1,3 и 3,6 В.
Под УДК подразумевается управляющий датчик кислорода. ДДК — дополнительный датчик кислорода.
Чаще всего провода кислородного датчика проверяют при помощи мультиметра/тестера – это стандартный способ диагностики. Причиной поломки зачастую становится нарушение контакта нагревателя либо его спирали. Мультиметр в режиме омметра позволит измерить сопротивление на нагревателе, которое должно находиться в диапазоне от 4,5 до 5,5 Ом.
Схема подключения лямбда зонда: что нужно знать?
Схема подключения лямбда устроена таким образом, что охватывает множество компонентов, помимо вышеописанных.
Это и реле, служащее для включения и выключение нагревательного элемента прибора в нужный момент, и колодка лямбда зонда, отвечающая за подключение. Также встречаются датчики, имеющие не 4, а 5 или 6 проводов (широкополосные, о которых мы уже упоминали). Соответственно, технология их подключения будет немного иной.
Наконец, универсальная лямбда обычно одноконтактная. Следует понимать, что при установке на ней не должно быть напряжения, поскольку она генерирует его сама, как «кислородная батарейка».
Если сомневаетесь в своих навыках работы с электрической цепью лямбды, обращайтесь в сервисный центр «Мастер глушителей». Мы профессионально сделаем распиновку, обеспечим качественный подогрев датчика и его надлежащую работу.
Устройство и схема подключения датчика лямбда зонда/кислорода, причины поломок
В современном технократическом мире существует потребность применения специальных устройств, называемых датчиками лямбда зондов, контролирующих концентрацию кислорода в отработанных газах двигателей внутреннего сгорания и котельных агрегатов. Тенденции к ужесточению экологических норм автомобильных выхлопов заставляют производителей автомобилей применять дублирующие датчики для более эффективной работы системы впрыскивания топлива и катализатора уходящих газов.
Описание и назначение устройств
Кислородные датчики, чаще всего, представляют собой гальваническую систему с твердотельным электролитом, который входит в рабочий режим при нагревании свыше 300˚C. Они изготавливаются с применением различных материалов в роли электролита, имеют конструкции в зависимости от назначения.
Название λ-зонды получили из-за обозначения данной греческой буквой коэффициента, отвечающего за избыток воздуха в двигателе внутреннего сгорания. При наилучшей пропорции топлива и воздуха в цилиндре двигателя (достигается максимальный КПД при минимальном расходе топлива), отношение расхода используемой воздушной смеси к стехиометрическому (оптимальному): λ = 1. При данном показателе двигатель автомобиля работает в экономном режиме и достигается наилучшая эффективность катализатора, устраняющего вредные вещества из выхлопных газов.
Назначение датчиков – контроль кислорода либо остаточного топлива в отработанных газах для функционирования ДВС и котлов в экономном режиме и минимизации вредных выбросов угарного газа, оксида азота, углеводородов при помощи автоматики.
В каких системах применяются
Кислородные датчики позволяют измерять объемную долю кислорода в газах, присутствующих после сгорания топлива в ДВС и котлах, работающих на твердом топливе либо метане.
λ- зонды применяются в приборах, измеряющих долю кислорода в уходящих газах котлов на ТЭС и других промышленных предприятиях для наилучшей регулировки КПД сгорания топлива при помощи подачи воздуха в топку, в зависимости от показаний приборов.
Наиболее широкое использование датчики получили в автомобильной промышленности для автоматической регулировки подачи бензиново-воздушной смеси в цилиндры двигателя.
Классификация, устройство и принцип действия
Датчики подразделяют на виды в зависимости от материала активных элементов, наличия системы подогрева, конструктивных особенностей и принципа действия. Рассмотрим существующие типы зондов.
Циркониевые
Для данного типа датчиков в качестве твердого электролита гальванической системы – керамической, проницаемой для ионов кислорода мембраны, служит диоксид циркония, который проявляет рабочие свойства при температуре свыше 300˚С. Наконечник из твердотельного циркония покрывается тонкой прослойкой оксида иттрия для лучшей проходимости атомов кислорода, а с внешней и внутренней стороны, частично покрывается тонким слоем платины, выполняющей функцию электродов. На примере рис.1 рассмотрим λ-зонд в разрезе.
- Провода: сигнальный и питания нагревателя.
- Контактная пластина нагревательного провода.
- Стальной корпус, соединенный с кожухом, вставляемым резьбой в гнездо отверстия выхлопной трубы.
- Циркониевый электролит с наружной и внутренней платиновыми электродными пластинами.
- Нагреватель.
- Керамический теплоизолирующий элемент.
- Контактная плоскость.
- Металлический корпус с отверстиями для попадания уходящих газов.
Принцип работы
Он довольно прост. Во внутренней камере рабочего элемента с платиновым электродом находится обычный воздух, имеющий стандартную (эталонную) проницаемость кислорода со своим давлением на стенки циркониевого наконечника при его нагреве до 350-400˚С.
На наружный платиновый электрод поступают выхлопные газы, делающие проницаемость переменной величиной, в зависимости от объема кислорода в этих газах. Разность потенциалов на электродах появляется вследствие перемещения ионов кислорода со стороны большего давления в сторону с меньшим давлением.
Резкий перепад напряжения (примерно от 850 мВ до 75 мВ) при изменении наличия кислорода в выхлопе от смеси с излишками топлива и недостатком кислорода (богатой, где λ 1), позволяет делать измерения с погрешностью около 5%.
Титановые
Рабочий элемент этого зонда – диоксид титана. Устройство датчика похоже на циркониевый, только не требует камеры с эталонной смесью воздуха. Принцип работы основан на изменении сопротивления материала при изменении объемной доли кислорода в выхлопе. Чем больше ионов кислорода, тем большее сопротивление возникает в рабочем элементе. Для функционирования системы необходима высокая температура нагрева двуокиси титана (свыше 600˚С) и постоянная подача питания на электронный блок управления – 5В.
Преимущества титановых зондов:
- Прочность, небольшие размеры.
- Отсутствие камеры с эталонной сравнительной смесью, что увеличивает их долговечность.
- Быстрое достижение нагрева и рабочего состояния.
К недостаткам можно отнести более высокую цену, чем у циркониевых, что обусловило отказ производителей автомобилей применять их в современных моделях.
Широкополосные – LSU датчики
При помощи широкого диапазона измерения в областях с различным коэффициентом избытка воздуха (λ 1), кислородные зонды этой конструкции получили универсальное применение в разнообразных типах двигателей (газовых, дизельных, внутреннего сгорания с принудительным зажиганием) и отопительных установках. Широкополосное устройство более точно подает сигнал на электронный блок управления о соотношении наличия кислорода и топлива в уходящих газах ДВС, что позволяет лучше контролировать уровень выхлопов.
По внешнему виду зонд похож на циркониевый, но принцип действия немного другой. Работа системы основана на поддержании постоянной разности потенциалов между электродами в пределах 0,45 В, соответствующей коэффициенту избытка воздушной смеси, равной единице.
Датчик состоит из двух рабочих элементов – циркониевого, выполняющего измерительную функцию и элемента для введения либо выведения кислорода из системы. Между рабочими элементами расположено удлиненное отверстие, размером от 20 до 50 мкм. В отверстии размещены два электрода для измерения и регулировки (накачивающий) объемной доли кислорода. В измерительное отверстие вставлен барьер, отделяющий его от уходящих газов и, регулирующий закачку либо откачку кислорода из него. Циркониевый элемент соприкасается с внешней атмосферой благодаря небольшому приточному каналу.
Если смесь, подающаяся в двигатель, обедненная на топливо, то уходящие газы богаты на кислород и он выводится из отверстия для измерения с помощью плюсового напряжения на выводящий рабочий элемент. В противном случае, на элемент подается напряжение с противоположным знаком, кислород входит в измерительное отверстие.
Электронная схема стремится удержать напряжение 0,45 В через, постоянно меняющееся напряжение на электродах элемента введения/выведения кислорода из системы, чтобы концентрация кислорода в отверстии соответствовала: λ = 1. В датчик вмонтирован нагреватель для достижения температуры 700˚С и выше, в зависимости от типа зонда.
Плюсы
Преимуществом широкополосных зондов можно считать:
- Широкий диапазон измерений и регулировки кислорода в выхлопе.
- Быстрый нагрев и приведение в рабочее состояние при запуске авто.
- Широкий спектр применения.
Следует отметить, что лямбда зонды бывают с 2, 3, 4, 5 выводами. Устройства без подогрева обычно имеют 2 вывода – сигнальный и заземляющий. Широкополосные устройства имеют 5 и более выводов.
Методы диагностики
Диагностику датчиков желательно проводить каждые 10000 км пробега автомобиля либо при первых признаках неисправности зонда, которые описаны ниже.
Мультиметром
Очень часто причиной нерабочего состояния кислородного зонда является повреждение спирали нагревателя либо контакта с нагревателем. Так ли это, легко проверить мультиметром, переключив его в режим работы омметра. Обычно 3 и 4 контакт (в 4-х проводном датчике) подходят к нагревательному элементу. Значение сопротивления должно быть в пределах 4,5 – 5,5 Ом. Если показания превышают данное значение, то зонд требует замены, так как нагревательный элемент вышел из строя.
Для проверки сигнала, поступающего на электронный блок, нужно завести автомобиль, нажать на педаль газа, чтобы подержать двигатель в высокооборотном режиме в течение некоторого времени. Сигнальный провод зонда (обычно черный) подключаем к плюсовому щупу мультиметра, а минусовой щуп, соединяем с «землей», переключаем прибор в режим вольтметра (2000 мВ). При удержании педали газа и резком отпускании, показания прибора должны быть в пределах от 1000 мВ до 100 мВ. Если показания остаются неизменными в пределах 400 – 500 мВ при манипуляции с педалью газа, то зонд неисправен.
Осциллографом
Качество проверки осциллографом проявляется в возможности узнать временной промежуток изменения сигнала выходного напряжения. Для проверки необходимо подсоединить осциллограф к проводу, дающему сигнал на электронный блок (черному). Далее нужно завести двигатель и подождать прогрева до 70˚С. По мере прогрева датчика до 400˚С, прибор начнет показывать волнообразный график. При работе двигателя на оборотах около 3000, прибор должен показывать ровный волнообразный график с нижним пределом уровня сигнала (не менее 0,1 В) и высоким (не более 0,8 — 1 В).
Если на экране прочерчивается график в крайних (верхней или нижней) точках, а также в положении около 0,6 В при максимальной работе двигателя, то λ – зонд неисправен.
Основные причины выхода из строя
Причин поломки датчика кислорода может быть много, среди них, конечно же, и качество применяемого топлива. Рассмотрим главные:
- Повреждение или встряска зонда вследствие неаккуратной езды (наезда на препятствие, яму).
- Перегрев зонда из-за неисправности в блоке зажигания.
- Засорение керамической поверхности продуктами сгорания некачественного бензина.
- Неисправность в работе двигателя (попадание масла в выхлоп).
- Замыкание в проводах датчика.
Поломка датчика может происходить постепенно, переводя работу двигателя в режим неправильной работы. На современных машинах стоит второй зонд после катализатора, что улучшает качество работы ДВС и защиту атмосферы от продуктов сгорания топлива.
Нюансы подключения
При поломке устройства, можно установить датчик, который рекомендует завод-изготовитель или похожий циркониевый зонд. Вот основные правила:
- Цвета проводов датчика различаются, но цвет подающего сигнал на электронную схему, всегда темный.
- «Земля» бывает желтого, белого, серого оттенков.
- Для подключения 4-проводного зонда на место 3-проводного – соединяются с «землей» автомобиля провода заземления нагревателя и минусовой сигнальной системы. Провод нагревателя через релейную схему подсоединяется к плюсовому полюсу аккумулятора.
Подключение нового зонда лучше сделает специалист из автосервиса.
Советы и рекомендации
При первых признаках неправильной работы лямбда датчика (машина начинает резко дергаться при начале движения, не так быстро срабатывает педаль газа, на панели должны высвечиваться предупредительные сообщения, перегрев двигателя во время работы, неприятные токсичные газы из выхлопной трубы), необходимо определиться с некоторыми вопросами:
- Точная установка неисправности зонда.
- Правильный подбор нового датчика.
- Не следует поддаваться желанию установить датчик, бывший в употреблении (неизвестен его остаточный ресурс), если хотите сберечь двигатель в хорошем состоянии.
- Не нужно пытаться разобрать устройство, оно сделано герметично и не ремонтируется.
Желательно покупать оригинальный зонд либо универсальный (для двигателей определенного производителя).
Подключение лямбда зонда 4 провода ваз
Как проверить лямбда-зонд и признаки не исправности? Подойдет ли Бош универсальный?
- Машину дергает когда едешь на малых оборотах – 1 ответ
Перво-наперво при выходе из строя и неисправности лябды в поведении авто появляются несколько ощутимых последствий:
- Увеличенный расход топлива
- Нестабильная работа двигателя авто (рывки)
- Нарушается работа катализатора (повышается токсичность)
Затем, чтобы проверить лямбда-зонд, для начала можно выкрутить и провести визуальную проверку (так же как и визуальная проверка свечей может о многом рассказать).
На автомобилях устанавливается несколько видов лямбд, датчики могут быть с одним, 2-мя, 3-мя, 4-мя даже пятью проводами, но стоит запомнить что в любом из вариантов один из них является сигнальным (зачастую чёрный), а остальные предназначены для подогревателя (как правило они белого цвета).
Чем и как можно проверить лямбду
Для проверки потребуется цифровой вольтметр (лучше аналоговый вольтметром, поскольку у него время «дискретизации» значительно меньше чем у цифрового) и осциллограф если есть возможность, измерения будут более точнее. Перед проверкой следует прогреть авто поскольку лямбда правильно работать при температуре более 300C°.
Сначала ищем провод обогрева:
Заводим двигатель, разъем лямбды не разъединяем. Минусовой щуп вольтметра (обычная цешка) соединяем с кузовом автомобиля. Плюсовым щупом цешки “тыкаем” на каждый контакт провода и наблюдаем за показанием вольтметра. При обнаружении плюсового провода обогревателя, вольтметр должен показывать постоянные 12 В. Далее минусовым щупом вольтметра пытаемся найти минусовой провод подогревателя. Включаемся в оставшиеся контакты разъема датчика. При обнаружении минусового контакта, опять же вольтметр покажет 12 В. Оставшиеся провод, провода сигнальные.
Проверка лямбда-зонда тестером:
Берём электронный милливольтметр постоянного напряжения и подсоединяем его параллельно ЛЗ («+» «-» к ЛЗ, — к массе), причём лямбда зонд должен быть подключен к контроллеру.
Когда двигатель прогреется (5-10 мин) затем нужно смотреть на стрелку вольтметра. Она должна периодически ходить между 0,2 и 0,8 В (т.е. 200 и 800 мВ, причём, если за 10 секунд произойдёт менее 8-и циклов — ЛЗ пора менять. Также к замене если напряжение «стоит» на 0,45 В.
Когда же напряжение всё время 0,2 или 0,9 В — то что-то со впрыском — смесь слишком бедная или слишком богатая. Поскольку напряжение датчика кислорода все время должно изменятся и скакать от ≈0,2 до 0,9V.
Имеется еще один быстрый способ проверки лямбда зонда. Следует сделать так:
Аккуратно прокалывается плюсовым контактом тестера (чёрный провод лямбды), другой контакт — на массу. На работающем моторе показания должны колебаться от 0,1 до 0,9V. Постоянные показания (к примеру, всё время 0,2) или показания, выходящие за эти рамки, или колебания с меньшей амплитудой говорят о неисправности зонда.
- всё время 0,1 — мало кислорода
- всё время 0,9 — много кислорода
- Зонд исправен, проблема в чём-то другом.
Если есть время и желание позаморачиватся можно провести несколько тестов на богатую и бедную смесь и дополнительно проверить датчик лямбда зонд.
- Отключите кислородный датчик от колодки и подключите его цифровому вольтметру. Заведите автомобиль, и, нажав педаль газа, увеличьте обороты двигателя до отметки 2500 оборотов в минуту. Используя устройство для обогащения топливной смеси, устройте снижение оборотов до 200 в минуту.
- При условии, что ваш автомобиль оборудован топливной системой с электронным управлением, выньте вакуумную трубку из регулятора давления топлива. Посмотрите на показания вольтметра. Если стрелка прибора приблизится к отметке 0.9 В, значит, лямбда зонд находится в рабочем состоянии. О неисправности датчика свидетельствует отсутствие реакции вольтметра, и показания его в пределах меньших отметки 0.8 В.
- Сделайте тест на бедную смесь. Для этого возьмите вакуумную трубку и спровоцируйте подсос воздуха. Если кислородный датчик исправен, показания цифрового вольтметра будут на уровне 0.2 В и ниже.
- Проверьте работу лямбда зонда в динамике. Для этого подключите датчик к разъему системы подачи топлива, и установите параллельно ему вольтметр. Увеличьте обороты двигателя до 1500 оборотов в минуту. Показатели вольтметр при исправном датчике должны быть на уровне 0,5 В. Другое значение свидетельствует о выходе из строя лямбда зонда.
Проверка напряжения в цепи подогрева
Для проверки наличия напряжения в цепи нужен вольтметр. Включаем зажигание и подсоединяем его щупами к проводам нагревателя (отсоединять разъем не можно, лучше проткнуть острыми иголками). Их напряжение должны быть равно тому, что выдает аккум на не запущенном двигателе (около 12В).
Если нет плюса нужно пройти цепь АКБ-предохранитель-датчик, поскольку он всегда идет напрямую, а вот минус поступает с ЭБУ, так что если нет минуса смотрим цепь до блока.
Проверка нагревателя лямбда зонда
Кроме как померить напряжения мультиметром, можно замерить еще и сопротивления для проверки исправности нагревателя (двух белых проводов), но нужно будет тестер переключить на Омы. В документации к определенному датчику обязательно указывается номинальное сопротивление (обычно оно около 2-10 Ом), ваша задача только проверить его и сделать вывод. На видео показан данный способ:
Проверка опорного напряжения датчика кислорода
Тестер переключаем на режим вольтметра, затем включив зажигание измеряем напряжение между сигнальным и проводом массы. В большинстве случаев опорное напряжение лямбда-зонда должно быть 0,45В.
Большинство циркониевых лямбда-зондов, которые ставятся на автомобили начиная 1999 года, имеют одинаковые цветовые дифференциации циркониевых датчиков. То же и с лямбда-зондами, выпускаемыми с применением титановых сплавов – распиновка у них соответствует одинаковым значениям, выведенным в таблице. Одна лишь разница – машин с лямбда-зондами на циркониевой основе очень много, титановые – редкость, но все же встречаются. Определение назначения каждого контакта лямбда-зонда можно определить, воспользовавшись специальными таблицами, которые будут представлены ниже.
Если сочетание цветов вашего датчика будет идентично сочетанию цветов одной из колонок предложенных таблиц ниже (циркониевые или титановые лямбды) – значит датчик имеет указанную конструкцию и распиновка лямбда зонда на 4 провода соответствует указанным в таблице данным.
Таблица распиновки датчиков лямбда-зонда
Назначение
Цветовые комбинации для циркониевых датчиков.
Всем привет. Подскажите пожалуйста, как правильно подключить 4-х контактный ламбда зонд от ВАЗ (№0 258 005 133) вместо родного 3-х контактного (№0 258 003 957).
Просто я нашёл несколько вариантов подключения, и не могу понять, какой из них будет более верным. Прошу помощи разобраться в этом вопросе.
Вариант 1:
Вариант 2:
— Чёрный провод на ЭБУ
— Серый провод — масса
— Белые провода — «-» и «+ «подогрева зонда — полярность не имеет значения.
В данном случае белый «-» кидают на массу, а белый «+» на замок зажигания, или на акб через реле или что нибудь в этом роде. Тогда получается что 2 родных контакта остаются пустыми.
Почему не хочу ставить родной ЛЗ? да потому что он стоит в районе 3000 р., а от ВАЗ 1000-1500 р. и как я понял, разницы в них абсолютно никакой нет, только в подключении.
Всём заранее огромное спасибо.
VESKO-TRANS.RU
АвтоНовости / Обзоры / Тесты
Как Подключить Универсальный Лямбда Зонд 4 Провода
Объем поставки Лямбда-зонд Bosch:
— 1 Bosch Универсальный лямбда-зонд
— 1 темный разъем (большой)
— 1 темная крышка разъема (маленькая)
— 4 серых кабельных разъема
— 8 желтых кабельных вводов
— 2 зажима для затяжки
Шаг 1
Снимите лямбда-датчик с выхлопной системы вашего автомобиля. Следите за кабельными насадками. Они будут использованы позже.
Шаг 2
Определите длину удаленного кабеля лямбда-зонда от основания до конца разъема. Если разъемы на кабеле не совпадают, перейдите к шагу 3.
Если разъемы совпадают и если
а) Длина кабеля не превышает 75 см. Перейти к шагу 4
б) кабель длиннее 75 см. Перейти к шагу 5
Шаг 3 | Монтажный кабель
Отрежьте кабель датчика не менее чем на 13 см и не более чем на 60 см позади кабельного вывода. Все крепления кабеля должны оставаться на уникальном кабеле.
Поместите лямбда-зонд Bosch со снятым датчиком. Обрежьте кабель Bosch Universal Lambda Sensor к длине извлеченного датчика.
Теперь перейдем к шагу 6.
Шаг 4 | Кабель короче 75 см
Отрежьте кабель датчика примерно на 10 см перед разъемом.
Поместите лямбда-зонд Bosch со снятым датчиком. Обрежьте кабель Bosch Universal Lambda Sensor к длине извлеченного датчика.
Теперь перейдем к шагу 6.
Шаг 5 | Длина кабеля больше 75 см.
Поместите лямбда-зонд Bosch со снятым датчиком. Отрежьте кабель зонда так, чтобы он был точно такой же длины, как и кабель универсального лямбда-зонда Bosch. Снимите кабельную стяжку с кабелей Bosch Lambda Sensor.
Установка разъема на универсальный лямбда-зонд.
Теперь перейдем к шагу 6.
Шаг 6
Проложите примерно 1 см (в принципе!) Изоляции кабеля на всех концах кабелей. Внимание: не повредите сердечники.
Шаг 7
Используя таблицу, сравните цвета удаленных кабелей лямбда-зонда (столбцы A) с цветами кабелей универсального лямбда-зонда Bosch (столбец B).
В основном: вы должны точно соответствовать цветам кабелей (риск повреждения!).
Затем поместите большой корпус разъема на универсальные кабели лямбда-зонда Bosch и небольшую крышку разъема на удаленные кабели лямбда-зонда.
Шаг 8
Наденьте желтоватые кабельные вводы на каждом конце кабеля, чтобы узкие концы уплотнений оказались снаружи корпуса разъема.
Шаг 9 Вставьте концы кабеля лямбда-датчика Bosch в серые кабельные разъемы. Затем закрепите средние части разъема кабеля. Проверьте прочность крепления кабеля разъема кабеля.
Шаг 10 Выполните подключение к проводке автомобиля. Проверьте правильное соотношение кабелей еще раз в шаге 7.
Внимание: кабели не должны быть запутаны! Протяните кабельные соединения в корпус разъема. Выполните тяговый тест.
Шаг 11
Вставьте кабельные разъемы в корпус разъема. Затем прижмите крышку разъема к корпусу разъема, чтобы услышать его фиксацию.
Шаг 12 Установите лямбда-зонд Bosch в автомобиль.
Закрепите кабель так, чтобы он был защищен от перегрева и трения. Используйте кабельные зажимы для снятого зонда. Используйте зажимы, чтобы затянуть провода по мере необходимости.
Как подключить подогреваемый лямбда-зонд
Инструменты, которые вам нужны
— Лямбда-зонд для снятия или гаечный ключ 22 мм
— Боковые фрезы
— Плоскогубцы
— рулетка
Каталожный номер и номер лямбда датчика
BMW 11 76 1 714 772 BMW 11 78 1 247 235 BMW 11 78 1 247 475 BMW 11 78 1 468 620 BMW 11 78 1 468 621 BMW 11 78 1 468 630 BMW 11 78 1 702 931 BMW 11 78 1 702 951 BMW 11 78 1 704 259 BMW 11 78 1 714 772 BMW 11 78 1 716 114 BMW 11 78 1 720 019 BMW 11 78 1 720 536 BMW 11 78 1 720 672 BMW 11 78 1 720 860 BMW 11 78 1 726 321 BMW 11 78 1 727 451 BMW 11 78 1 730 005 BMW 11 78 1 730 007 BMW 11 78 1 733 628 BMW 11 78 1 734 345 BMW 11 78 1 734 390 BMW 11 78 1 734 393 BMW 11 78 1 734 796 BMW 11 78 1 735 345 BMW 11 78 1 735 499 BMW 11 78 1 735 500 BMW 11 78 1 735 710 BMW 11 78 1 738 331 BMW 11 78 1 739 642 BMW 11 78 1 741 317 BMW 11 78 1 742 023 BMW 11 78 1 747 005 BMW 11 78 1 747 579 CITROEN / PEUGEOT E 144 008 Mazda JE08-18-861B Mercedes-Benz 000 540 24 17 Mercedes-Benz 000 540 26 17 Mercedes-Benz 000 540 27 17 Mercedes-Benz 000 540 29 17 Mercedes Еда Бензин 000 000 540 38 17 Mercedes-Benz 000 540 41 17 Mercedes-Benz 000 540 45 17 Mercedes-Benz 000 540 49 17 Mercedes-Benz 00 0 540 50 17 Mercedes-be nz 00 0 540 51 17 Mercedes-Benz 000 540 55 17 Mercedes-Benz 000 540 56 17 Mercedes-Benz 000 540 59 17 Mercedes-Benz 000 540 73 17 Mercedes-Benz 000 540 82 17 Mercedes-Benz 000 540 83 17 Mercedes- Benz 000 540 86 17 Mercedes-Benz 001 540 01 17 Mercedes-Benz 001 540 13 17 VOLVO 1271576 VW 021 906 265 A VW 021 906 265 B VW 021 906 265 N VW 030 906 265 AP VW 030 906 265 R VW 037 906 265 S