Объясните как в биосфере осуществляется круговорот углерода

Круговорот углерода Значение углерода в жизнедеятельности живой природы Особое значение углерод в природе имеет не просто так: уникальные свойства серьезно выделяют его на фоне других
Содержание
  1. Объясните как в биосфере осуществляется круговорот углерода
  2. Круговорот углерода
  3. Значение углерода в жизнедеятельности живой природы
  4. Геохимический цикл углерода
  5. Схема круговорота углерода в природе
  6. Этапы круговорота углерода
  7. Последовательность круговорота углерода
  8. Результаты круговорота углерода
  9. Роль живых организмов в круговороте углерода
  10. Особенности круговорота углерода
  11. Круговорот углерода в природе — особенности, описание и схема процесса
  12. Круговорот элемента в природе
  13. Дыхательный обмен
  14. Деятельность микроорганизмов
  15. Углерод в воде и на суше
  16. Роль людей
  17. Значение цикла
  18. Глава 1. Структура и функции биосферы
  19. Глава 1. Структура и функции биосферы
  20. Лекция 6. Круговороты веществ в экосистемах
  21. 6.3. Круговорот углерода
  22. Биология в лицее
  23. Закономерная цикличность: как происходит круговорот углерода в природе
  24. Где присутствует углерод
  25. Что происходит в атмосфере
  26. Откуда поступает вещество
  27. А чем поглощается
  28. Как идет процесс в биосфере
  29. Газообмен гидросферы с атмосферой
  30. Движение углерода в литосфере
  31. Фотосинтез: особая часть большого кругооборота
  32. Схематическое изображение процесса
  33. Антропогенное влияние на процесс
  34. Вывод

Объясните как в биосфере осуществляется круговорот углерода

Круговорот углерода

Значение углерода в жизнедеятельности живой природы

Особое значение углерод в природе имеет не просто так: уникальные свойства серьезно выделяют его на фоне других химических элементов системы. Углерод образует прочные химические связи как внутри себя (между собственными атомами), так и с другими элементами. Но несмотря на свою прочность, эти связи могут быть достаточно просто разорваны во вполне мягких условиях.

В природе существует конкретная экономичность благодаря углероду: с помощью углерода и некоторого количества типов его связей производится сокращение ферментов, участвующих в расщеплении и синтезе органики. Важным также является то, что углерод – один из трех элементов (вместе с кислородом и водородом), которые составляют не больше, не меньше, чем 98 % всей массы живого на Земле.

В рамках гипотезы А.И. Опарина, принятой научным сообществом, предполагается, что самые первые органические соединения на нашей планете произошли абиогенным образом. Первичными источниками углерода были такие соединения, как HCN (цианистый водород) и CH4 (метан).

Именно эти вещества в основном содержались в атмосфере Земли начала времен. На данный момент углерод (в соединении СО2) отлично ассимилируется посредством фотосинтеза – сложного процесса, происходящего в клетках зеленых растений. Животные же в большинстве потребляют углерод в форме уже готовых органических соединений.

Самое распространенное соединение углерода – его двуокись (СО2). Будучи растворенной практически во всех жидкостях (в частности – и в воде) на Земле, двуокись углерода выполняет важную функцию поддержания кислотной среды. А такое соединение как, например, CaCO3 является основным в составе раковин и внешних покрытий беспозвоночных или в скорлупе яиц.

Геохимический цикл углерода

Геохимический цикл углерода по своей сути – это схема, отражающее то количество углерода, который циркулирует между слоями: атмосферой, геосферой и гидросферой. Замеры производятся в течение года и составляют миллиарды тонн. При это данный показатель еще включает и те 5,5 гигатонн, которые попадают в атмосферу при сжигании человеком ископаемого топлива.

По факту – геохимический цикл углерода представляет собой совокупность процессов по переносу углевода из одного так называемого геохимического резервуара в другой. Стоит отметить, что главную роль в этом процессе играют живые организмы.

Важно знать, что геохимический цикл углерода обладает рядом особенностей:

  • Он всегда происходит сквозь гидросферу и атмосферу и поэтому серьезно влияет на все процессы в окружающей среде, и в первую очередь, на представителей биосферы;
  • На протяжении становления и развития планеты происходящие катастрофические изменения значительно влияли на эволюцию цикла.

На данный момент самым изученным является четвертичный период геохимического цикла. В нем происходили те изменения, которые напрямую связаны с климатическими. Именно поэтому ученым намного проще отследить этот период, так как он четко зафиксирован вечной мерзлотой Арктики и Антарктиды .

Схема круговорота углерода в природе

Круговорот углерода в природе – это обязательный комплекс из различного рода физических и химических процессов и реакций. Известно, что данный элемент входит в состав всех живых организмов на планете Земля и прямо связан с процессами их жизнедеятельности. Атомы углерода в том или ином виде соединений непрерывно циркулируют во всех сферах планеты, отражая, по сути, общую динамику живых процессов.

Основная часть углерода представлена в атмосфере – и это углекислый газ СО2. В воде также присутствует углерод в форме также диоксида. При переходе жидкостей и газов в агрегатные состояния друг друга, круговорот и осуществляется – углерод свободно «гуляет» в окружающей среде. В чистом виде соединение СО2 потребляется растениями, преобразовывая его в процессе фотосинтеза в различные соединения и отдельные элементы, которые отправляются дальше по кругу. Таким образом, весь попавший в растение углерод разделяется на следующие части:

  • в составе растения. Определенное количество углерода остается в клетках и задерживается в них до самого окончания жизненного цикла растения;
  • переходит к травоядным. Потребляя в пищу растения, животные получают из них какую-то часть углерода, отдавая (буквально – выдыхая) его в атмосферу в виде СО2;
  • от травоядных – к хищникам. По аналогичному принципу (через потребление пищи) плотоядные животные потребляют углерод и выделяют его диоксид посредством дыхательных процессов;
  • попадает в грунт. Когда растение умирает, часть оставшегося в нем углерода переходит в почву. Так начинается процесс образования ряда топливных полезных ископаемых. Классическим примером может стать уголь.

Аналогичные процессы происходят в гидросфере. Содержащийся в воде углерод потребляется морскими обитателями растительного и животного мира.

В целом, попадание углерода в атмосферу связано напрямую с процессами жизнедеятельности живых организмов на планете. Отдельным естественным процессом выброса углекислого газа в атмосферу является извержение вулкана. Искусственным же считается сжигание топлива человеком. К сожалению, в совокупности это дает переизбыток углерода в атмосфере, чем создается парниковый эффект, пагубно влияющий на состояние окружающей среды и экологии. Эта проблема сейчас – одна из самых обсуждаемых в мире.

Этапы круговорота углерода

Наибольшее количество углерода на планете представлено в форме соединения диоксида углерода или углекислого газа CO2. Он содержится в атмосфере, растворен в водах Мирового океана. Для процессов, происходящих в атмосферных слоях, круговорот углерода происходит следующим образом:

  • оставшийся в растениях после поглощения из воздуха углерод задерживается некоторой частью в них самих и уходит в почву после отмирания. Далее углерод становится материалом для «работы» редуцентов – грибов и термитов – которые, питаясь органическими веществами, разлагают их до более простой неорганики. Впоследствии вновь соединившийся с кислородом углерод в форме CO2 вернется в атмосферу;
  • дополнительный способ – если растение попадает под грунт. Там, разлагаясь, оно может превратиться в ископаемое топливо, в основе которого лежит углерод. Так появляется уголь.
  • вторым вариантом развития событий может стать употребление растений в пищу травоядными. Углерод попадая в организм животного, затем выходит с дыханием обратно в воздух или и в почву в процессе разложения после смерти. Также травоядное животное может стать пищей для хищников, тем самым передав ему углерод, который вернется в воздух и почву тем же образом.

В воде круговорот имеет меньше вариаций, но также возможны несколько способов:

  • растворенный в воде углекислый газ в процессе газообмена регулярно циркулирует между Мировым океаном и атмосферой;
  • углерод находится в составе тканей растений и животных, которые после отмирания превращаются в известняк, оседая на дне и отдавая углерод в воду.

Последовательность круговорота углерода

Последовательность биогенного круговорота углерода в природе всегда начинается с его потребления растениями из атмосферы и/ или воды. Далее посредством фотосинтеза углерод в растениях «разделяется» на нужные части: некоторое количество остается в растении, часть уходит в атмосферу и почву (в случае естественной гибели растения). Поглощая растения как пищу, животные продолжают распространение углерода: выдыхая его в виде углекислого газа или отдавая в почву после смерти.

Все процессы круговорота углерода неотделимы друг от друга и всегда протекают параллельно. В природе нет сеткой последовательности действий перемещения углерода, каждый из этапов протекает параллельно другому.

Результаты круговорота углерода

Элемент углерода в простейшем виде постоянно осуществляет циркуляцию между сферами планеты и живыми организмами на ней. Будучи поглощенным растениями в форме CO2, в процессе фотосинтеза он превращается в простые сахара, которые затем становятся жизненно важными элементами в цепочке питания животных. Они же, в свою очередь, преобразуя за счет метаболизма полученные вещества, отдают углерод в атмосферу в виде соединения CO2.

Также на состояние и количество углерода влияют геологические процессы. Попавший в почву углерод, превратившийся в горючее ископаемое (уголь, нефть, газ) на какое-то время исключается из дальнейшего круговорота углерода. Но как только человек производит их добычу и пускает дальше в потребление, при сжигании топливных веществ, углекислый газ возвращается в атмосферу в обильном количестве.

Роль живых организмов в круговороте углерода

Живые организмы – важна и неотъемлемая составляющая круговорота углерода. Их участие в этапах перемещения углерода и организации его естественных соединений в ходе химических реакций и физических процессов играет важную роль для его распространения и усвоения.

Читайте также  Почему не работает стартер

Поглощая углерод, входящий в состав воздуха в виде СО2, растения синтезируют его в те вещества и соединения, которые в дальнейшем обеспечивают жизнь травоядным животным и хищникам. Процесс круговорота питания напрямую связан с круговоротом углерода, который является важным химическим элементом, уровень которого должен быть поддержан на всех этапах потребления пищи животными.

Те растения, которые не идут в пищу животным, после отмирания попадают в почву. Выделяемый из них углерод становится основой для образования ископаемых, используемых человеком для организации жизнедеятельности. Появление добываемых ресурсов невозможно без микроорганизмов, которые имеют возможность разлагать сложные органические соединения до неорганических. Именно благодаря эти редуцентам (грибам и прочим простейшим организмам) происходит длительный процесс появления в почве угля, нефти и природного газа. При этом человек, как и любой другой живой организм, потребляет необходимое количество углерода не только техногенно, но и в естественных процессах работы его организма, и отдает углекислый газ в атмосферу.

Распространение углерода в Мировом океане происходит по иным принципам имеет свою специфику, но все живые организмы – обитатели морских глубин – принимают активное участие в круговом обмене углеродом как внутри своего ареала, так и по всей планете включительно.

Особенности круговорота углерода

Главной особенностью круговорота углерода является возможность консервации этого элемента. Большинство используемых сейчас ископаемых ресурсов, образовавшихся с помощью углерода миллионы лет назад, сжигаются и по факту являются завершающим этапом круговорота углерода и одновременно начинают новый, отдавая большое количество углекислого газа атмосфере.

Существует ряд статистик и оценок, по которым за год в процессе фотосинтеза появляется порядка 60 млрд тонн углерода, а разложение растений дает около 48 млрд тонн. При этом в почве оседает и начинает консервироваться не менее 10 млрд тонн. Стоит еще не упускать из внимания то, что в среднем в год сжигается порядка 4 млрд тонн топлива, а вместе с ним – 1 млрд углерода уходит в атмосферу.

Главные производители углерода на Земле – леса. При этом основными среди них являются тропические и бореальные леса. Именно они аккумулируют большую часть углерода на планете в своей биомассе и почве. В этом плане Россия – передовая в отношении лесозоны страна. Все российские леса – это 73 % бореальной лесной зоны всей планеты. А Сибирь – это 42 % из этих самых 73%.

Помимо атмосферы круговорот углерода происходит и в воде: там процесс носит более сложный характер. Связано это в первую очередь с тем, что проникновение углерода в воду значительно зависит от поступления кислорода в верхние слои океана. Общие показатели перемещаемого в Мировом океане углерода примерно вдвое меньше, чем на суше. Однако миграция углерода при этом регулярна, поэтому его уровень постоянно меняется и зависит от множества как естественных, так и антропогенных факторов.

Круговорот углерода в природе — особенности, описание и схема процесса

Круговорот элемента в природе

Все соединения в окружающей среде можно разделить на живые (органические) и мертвые (неорганические). К первой группе принадлежат вещества биологического происхождения, например, липиды, протеины. В состав их структуры входит ряд микроэлементов, имеющих важное значение для живого организма. Неорганические соединения образуются в результате химических реакций. К их числу принадлежат газы, соли, металлы и т.д.

Кратко схема круговорота углерода в природе можно описать следующим образом:

  1. Водная среда, атмосфера и суша заполнены неорганическими соединениями, которые попадают в пищеварительную систему простейших существ.
  2. Последние активно поглощаются высшими животными.
  3. После гибели простейших организмов их останки снова перерабатываются до состояния металлов и солей.

Это общее описание принципа оборота углекислого газа (СО2) в природе, приведенного на рисунке.

Однако при ближайшем рассмотрении процесса встречаются некоторые нюансы. Их необходимо изучить, чтобы написать доклад или реферат по теме.

Дыхательный обмен

Углекислый газ присутствует в воздухе, земле и воде. Он образуется вследствие дыхания живых существ, горения, а также гниения. Растения обладают способностью усваивать углерод, входящий в состав СО2. После этого они перерабатывают его в органические соединения. Этот процесс называется фотосинтезом, а протекает он в листьях.

Для его активации необходим солнечный свет. Следует помнить, что скорость и качество поглощения углерода во многом зависит от категории представителей растительного мира планеты. Люди и животные могут выживать только благодаря флоре, занимающей центральное место в схеме круговорота кислорода.

Деятельность микроорганизмов

Простейшие организмы являются началом и концом любой пищевой цепи. Именно благодаря их работе растения и животные получают необходимую для жизни энергию. Погибшие представители флоры и фауны оказываются в структуре почвы и морского дна. После этого в работу включаются микроорганизмы, перерабатывающие их плоть в простые химические соединения. Этот процесс сопровождается выделением CO2.

В результате образуются питательные ресурсы, необходимые для жизни растений и животных, а круговорот элементов начинается с самого начала. При этом некоторым простейшим для расщепления мертвой структуры не требуется кислород. Например, в воде обитают анаэробные бактерии. Они обладают способностью производить сернистое черное железо. Именно это вещество придает болотам и рекам характерный цвет.

Частью углеродного цикла является симбиоз, представляющий собой выгодное взаимодействие двух организмов. Не все животные способны расщеплять сложную растительную клетчатку. Однако в их желудках обитают бактерии, расщепляющие целлюлозу на простые элементы, которые легко усваиваются организмом парнокопытных. Можно привести много примеров такого сотрудничества.

Углерод в воде и на суше

Атмосфера содержит около 30 % всего углерода планеты. Этого количества элемента достаточно для растений, являющихся главным элементом пищевой цепи высших животных. Благодаря фотосинтезу флора получает требуемую для роста энергию из углерода. Травоядные животные употребляют растения, обеспечивая себя пищей. В свою очередь, хищные представители фауны поедают слабейших травоядных.

После смерти плотоядных все органические вещества оказываются в почве, где и перерабатываются микроорганизмами. Жизнедеятельность простейших организмов способствует образованию газов и солей, без которых растения не смогли бы существовать. В результате круговорот веществ замыкается.

Взаимодействие элементов в водной среде является более сложным процессом. Углекислый газ сначала должен раствориться в воде. Только после этого он может быть переработан планктоном. Эти микроорганизмы обитают в верхних слоях воды и находятся в начале пищевой цепи.

Роль людей

Человек уже давно стремится перестроить окружающую среду под свои нужды. К сожалению, это оказывает негативное влияние на природу. Злоупотребление ресурсами приводит к следующим отрицательным последствиям:

  • быстро уменьшается количество растений, в первую очередь деревьев, что приводит к увеличению содержания углекислого газа в атмосфере;
  • фабрики и заводы сжигают ископаемые ресурсы, вызывая тем самым дисбаланс химических элементов.

Активная деятельность человека привела к появлению глобального потепления. Из-за большого количества парниковых газов в атмосфере, процесс отдачи инфракрасного излучения планетой в космическое пространство замедлился. В результате наблюдается таяние льдов на полюсах, что привело к увеличению уровня Мирового океана и гибели некоторых представителей биосферы.

Значение цикла

За все время существования Земли в ее атмосфере накопилось большое количество углекислого газа. Если исключить оборот углерода в природе, жизнь утратит свой потенциал к развитию. Этот химический элемент можно смело назвать важнейшим в биологической системе планеты благодаря следующим свойствам:

  1. Углеводы необходимы для жизни всех представителей флоры и фауны.
  2. Углерод входит в состав гликогена, являющегося дополнительным источником энергии для высших организмов. Это вещество синтезируется клетками печени и мышц.
  3. Химический элемент является стройматериалом для протеинов, из которых состоят ткани тела человека и животных.

Значение круговорота углерода в природе сложно переоценить. Школьникам необходимо знать, как он происходит и для чего необходим. Только разобравшись в этом вопросе, они смогут подготовить сообщение на заданную тему.

Глава 1. Структура и функции биосферы

О.А. Барабанова, И.Н. Безкоровайная, Е.Б. Бухарова [и др.]
Экология: курс лекций
Красноярск: Сибирский федеральный университет, 2010. – 325 с.

Глава 1. Структура и функции биосферы

Лекция 6. Круговороты веществ в экосистемах

6.3. Круговорот углерода

Углерод существует в природе во многих формах, в том числе в составе органических соединений. Неорганическое вещество, лежащее в основе биогенного круговорота этого элемента, – диоксид углерода (СО2). Он входит в состав атмосферы, а также находится в растворенном состоянии в гидросфере.

Основная масса углерода в земной коре находится в связанном состоянии. Важнейшие минералы углерода – карбонаты, количество углерода в них оценивается в 9,6·10 15 т. Разведанные запасы горючих ископаемых (уголь, нефть, шунгит, битумы, торф, сланцы, газы) содержат около 1·10 13 т углерода, что соответствует средней скорости накопления 7 млн т /год. Это количество по сравнению с массой циркулирующего углерода незначительное и как бы выпадает из круговорота и теряется в нем.

Содержание углекислоты в атмосфере около 0,03 %, в почвенном воздухе – на порядок больше.

Круговорот углерода – самый интенсивный. Источником первичной углекислоты биосферы считается вулканическая деятельность. В современной биосфере на выделение СО2 из мантии Земли при вулканических извержениях приходится не более 0,01 %, и одним из основных источников углекислоты в атмосфере является дыхание. Включение углерода в состав органических веществ происходит благодаря растительным фотосинтезирующим организмам. Растительность постоянно обменивается веществом и энергией с атмосферой и почвой и, таким образом, круговорот углерода представляет собой сложную взаимозависимую цепь обменных процессов в системе «атмосфера-растительность-почва-атмосфера».

Читайте также  Как правильно протянуть головку блока

В круговороте углерода можно выделить два важнейших звена, имеющих планетарные масштабы и связанные с выделением и поглощением кислорода (рис. 11):

– фиксация СО2 в процессе фотосинтеза и генерация кислорода (агенты – растения);

– минерализация органических веществ (разложение до СО2) и затрата кислорода (основные агенты – микроорганизмы; на животных, например, приходится от 4 до 10–15 % эмиссии углекислоты).

Микроорганизмы и животные-деструкторы разлагают мертвые растения и погибших животных, в результате чего углерод мертвого органического вещества окисляется до диоксида углерода и снова попадает в атмосферу. Вклад почвенного дыхания (включая дыхание корней и биоты) в общую респирацию экосистемы может составлять от 40 до 70 %. При определенных условиях в почве разложение накапливающихся мертвых остатков идет замедленным темпом – через образование сапротрофными организмами гумуса, минерализация которого может идти с различной, в том числе и с низкой, скоростью.

Рис. 11. Круговорот углерода (по Ф. Рамад, 1981)

В некоторых случаях цепь разложения органического вещества бывает неполной. В частности, деятельность деструкторов может подавляться недостатком кислорода или повышенной кислотностью. В этом случае органические остатки накапливаются в виде торфа; углерод не высвобождается и имеет место его консервация. Аналогичные ситуации возникали и в прошлые геологические эпохи, о чем свидетельствуют отложения каменного угля, нефти, горючих сланцев, торфа и др.

Особенность круговорота углерода состоит в консервации элемента. В далекие геологические эпохи, сотни миллионов лет назад, значительная часть органического вещества, созданного в процессах фотосинтеза, накапливалась в литосфере в виде ископаемого топлива. Сжигая его, мы в определенном смысле завершаем круговорот углерода.

Таким образом, по разным оценкам, в среднем за год в процессе фотосинтеза связывается 60 млрд т углерода, в процессе разложения органического вещества высвобождается 48 млрд т углерода, поступает в почву и «консервируется» в многолетних фитоценозах 10 млрд т, погребается в осадочной толще литосферы (включая реакции диоксида углерода с горными породами) 1 млрд, поступает в результате сжигания топлива 4 млрд т углерода.

Основные накопители углерода на Земле – леса: в биомассе лесов приблизительно в 1,5, а в лесном гумусе – в 4 раза больше углерода, чем в атмосфере. Особое планетарное значение в аккумуляции углерода имеют тропические и бореальные леса (табл. 4).

Запасы углерода в основных биомах планеты

Запасы углерода (Гт)

Тропические леса

Бореальные леса

Пустыни и полупустыни

Северные леса имеют особое общепланетарное значение. Их роль в регулировании атмосферы и климата сейчас общепризнана. Косвенные данные об углеродном балансе свидетельствуют о высокой степени накопления углерода лесными экосистемами северных широт – в них сосредоточено около 33 % глобальных запасов углерода. Хотя бореальные леса и уступают тропическим по площади и запасам фитомассы, по своему воздействию на биосферу и параметрам углеродного цикла они существенно превосходят тропические экосистемы. Вследствие особенностей климатических условий бореальные леса аккумулируют углерод не только в фитомассе, но и в почвенном органическом веществе, в результате чего его связывание в процессе фотосинтеза превышает эмиссию в атмосферу за счет дыхания и минерализации органических остатков. На долю лесов России приходится 73 % площади бореальной зоны мира. Причем 42 % сосредоточено в Сибири. Суммарная аккумуляция углерода в лесных экосистемах Центральной Сибири (территория Красноярского края) составляет 15 879 млн т (156 тС/га лесопокрытой территории), в том числе на надземную и подземную фитомассу приходится 26 %, остальное аккумулировано в органическом веществе верхней 50-сантиметровой толщи почв (22 % в мертвых растительных остатках, 52 % – в гумусе).

Круговорот углерода совершается и в водной среде. Но здесь он более сложен по сравнению с континентальным, поскольку возврат этого элемента в форме СО2 зависит от поступления кислорода в верхние слои воды как из атмосферы, так и из нижележащей толщи.

В целом показатели годичного круговорота массы углерода в Мировом океане почти вдвое ниже, чем на суше. Между сушей и океаном постоянно идут процессы миграции углерода, в которых преобладает вынос его в форме карбонатных и органических соединений с суши в океан. Из Мирового океана на сушу углерод поступает в незначительных количествах в форме СО2, выделяемого в атмосферу. Углекислый газ атмосферы и гидросферы обменивается и обновляется живыми организмами за 395 лет.

До наступления индустриальной эры потоки углерода между атмосферой, сушей и океаном были сбалансированы. Влияние человека на круговорот углерода проявилось в том, что с развитием индустрии и сельского хозяйства поступление СО2 в атмосферу стало расти за счет антропогенных источников.

Главная причина увеличения содержания СО2 в атмосфере – это сжигание горючих ископаемых, однако свой вклад вносят и транспорт, и уничтожение лесов. Миллиарды тонн углекислоты ежечасно поступают в атмосферу при сжигании дров, угля, нефти, газа. Энергетический бум ХХ в. увеличил содержание углекислоты в атмосфере на 25 %, метана – на 100 %.

При уничтожении лесов содержание углекислого газа в атмосфере увеличивается при непосредственном сжигании древесины, за счет снижения фотосинтеза и при окислении гумуса почвы (если на месте лесов распахивают поля или строят города). Сокращение площадей лесов из-за рубок и пожаров, отчуждение лесных земель под разные виды строительства снижают секвестр углерода растительным покровом.

Антропогенное воздействие на баланс углерода проявляется и в сельскохозяйственной деятельности, приводя к потере углерода в почве, так как фиксация (связывание) СО2 из атмосферы агрокультурами в течение лишь части года не компенсирует полностью высвобождающийся из почвы углерод, который теряется при окислении гумуса (результат частой вспашки).

Повышение концентрации углекислого газа в атмосфере за последнее столетие, не сопровождаемое увеличением запасов фитомассы растительного покрова, свидетельствует о потере компенсаторных способностей биосферы.

Биология в лицее

Сайт учителей биологии МБОУ Лицей № 2 г. Воронежа, РФ

Site biology teachers lyceum № 2 Voronezh city, Russian Federation

Круговорот углерода и кислорода

Углерод и кислород входят в состав практически всех органических веществ, из которых состоят живые организмы.

Круговорот углерода. Углерод в биосфере часто представлен наиболее подвижной формой — углекислым газом. Источником первичной углекислоты биосферы является вулканическая деятельность, связанная с вековой дегазацией мантии и нижних горизонтов земной коры. Миграция углекислого газа в биосфере Земли протекает двумя путями. Первый путь заключается в поглощении его в процессе фотосинтеза с образованием органических веществ и в последующем захоронении их в литосфере в виде торфа, угля, горных сланцев, рассеянной органики, осадочных горных пород. Так, в далекие геологические эпохи сотни миллионов лет назад значительная часть фотосинтезируемого органического вещества не использовалась ни консументами, ни редуцентами, а накапливалась и постепенно погребалась под различными минеральными осадками. Находясь в породах миллионы лет, этот детрит под действием высоких температур и давления превращался в нефть, природный газ и уголь, во что именно — зависело от исходного материала, продолжительности и условий пребывания в породах. Теперь мы в огромных количествах добываем это ископаемое топливо для обеспечения потребностей в энергии, а сжигая его, в определенном смысле завершаем круговорот углерода. Если бы ни этот процесс в истории планеты, вероятно, человечество имело бы сейчас совсем другие источники энергии, а может быть и совсем другое направление развития цивилизации.

Ежегодно в процесс фотосинтеза вовлекается 170 млрд т углекислого газа, 68 млрд т воды, а также около 6 млрд т азота, 2 млрд т фосфора, миллионы тонн калия, кальция, магния, серы, железа и др. элементов.

По второму пути миграция углерода осуществляется созданием карбонатной системы в различных водоемах, где CO2 переходит в H2CO3, HCO3 — , CO3 2- . Затем с помощью растворенного в воде кальция (реже магния) происходит осаждение карбонатов CaCO3 биогенным и абиогенным путями. Возникают мощные толщи известняков. Наряду с этим большим круговоротом углерода существует еще ряд малых его круговоротов на поверхности суши и в океане. В пределах суши, где имеется растительность, углекислый газ атмосферы поглощается в процессе фотосинтеза в дневное время. В ночное время часть его выделяется растениями во внешнюю среду. С гибелью растений и животных на поверхности происходит окисление органических веществ с образованием CO2. Особое место в современном круговороте веществ занимает массовое сжигание органических веществ и постепенное возрастание содержания углекислого газа в атмосфере, связанное с ростом промышленного производства и транспорта.

Наиболее важными звеньями круговорота углерода являются усвоение углекислого газа из воздуха зелёными растениями в процессе фотосинтеза и возвращение углекислого газа в атмосферу при дыхании, а также при разложении тел животных, питающихся растениями.

Круговорот кислорода. Кислород — наиболее активный газ. В пределах биосферы происходит быстрый обмен кислорода среды с живыми организмами или их остатками после гибели. В составе земной атмосферы кислород занимает второе место после азота. Господствующей формой нахождения кислорода в атмосфере является молекула О2. Круговорот кислорода в биосфере весьма сложен, поскольку он вступает во множество химических соединений минерального и органического миров. Свободный кислород современной земной атмосферы является побочным продуктом процесса фотосинтеза зеленых растений и его общее количество отражает баланс между продуцированием кислорода и процессами окисления и гниения различных веществ. В истории биосферы Земли наступило такое время, когда количество свободного кислорода достигло определенного уровня и оказалось сбалансированным таким образом, что количество выделяемого кислорода стало равным количеству поглощаемого кислорода.
Круговорот кислорода — взаимообмен кислородом между средой и живыми организмами или их остатками. Основным источником возобновления кислорода на Земле является процесс фотосинтеза. Кислород используется всеми формами жизни (кроме анаэробов) в процессе дыхания.

Читайте также  Как поставить аккумулятор в машину

Закономерная цикличность: как происходит круговорот углерода в природе

Этот элемент присутствует в любой живой молекуле. Под воздействием внешних факторов он переходит из одной формы в другую. Круговорот углерода в природе обеспечивает возможность существования организмов на Земле. Без этих циклов превращений планета станет безжизненной….

  1. Где присутствует углерод
  2. Что происходит в атмосфере
  3. Откуда поступает вещество
  4. А чем поглощается
  5. Как идет процесс в биосфере
  6. Газообмен гидросферы с атмосферой
  7. Движение углерода в литосфере
  8. Фотосинтез: особая часть большого кругооборота
  9. Схематическое изображение процесса
  10. Антропогенное влияние на процесс
  11. Вывод

Где присутствует углерод

По распространенности химических элементов элемент занимает 15 место. По важности это один из основных участников геохимических реакций. Значение вещества в природе сложно недооценить. Оно переходит из неорганического состояния в органическое, строит живые клетки.

Встретить его можно в:

  • атмосфере (углекислый газ 0,04 % от общей массы воздуха),
  • гидросфере (в виде растворенного в водах мирового океана СО2, в составе питающихся им бактерий верхнего слоя),
  • литосфере (полезные ископаемые: нефть, газ, уголь, известняк, мел),
  • биосфере (в составе любых живых организмов планеты).

Все оболочки Земли тесно связаны. Освобождение элемента, переход из одного вида в другой происходит внутри каждой.

Молекулы проникают в соседнюю сферу. Описывая кратко круговорот углерода в природе, схема выглядит так:

это бесконечная незамкнутая цепь перехода вещества из органического состояния в неорганическое и обратно.

С одной стороны фотосинтезирующие растения и вода, с другой стороны гетеротрофы, то есть потребляющие организмы (животные).

Что происходит в атмосфере

Углерод в атмосфере имеется всегда. Он присутствует в виде углекислого газа (0,04 %), метана (0,0002 %), окиси углерода (следы). Количество постоянно меняется. Это связано с деятельностью человека, сезонными факторами, температурой окружающей среды.

Откуда поступает вещество

Круговорот углекислого газа в природе– это основной вид перехода и превращений в воздушной оболочке Земли. Постоянными источниками являются:

  • живые существа, выдыхающие углекислоту,
  • продукты разложения органических остатков (бактерии перерабатывают трупы животных, гниющие растения, выделяется СН4),
  • продукты горения природного (уголь, нефть, газ) или синтетического топлива,
  • выбросы вулканических газов во время извержения (первичная углекислота в атмосфере),
  • пожары,
  • хозяйственная деятельность человека (выделение СО2 при производстве цемента: СаСО3-&gt,СаО+СО2),
  • повышение температуры мирового океана и высвобождение диоксида элемента.

Важно! Осенью и зимой содержание СО2 в воздухе выше, чем летом и весной. Так человек воздействует на круговорот углерода в природе, схема которого отыщется на порталах, посвященных защите окружающей среды.

А чем поглощается

В природе существует неустойчивое равновесие. Двуокись вещества выводится из атмосферы и замещается другими.

Воды Мирового океана поглощают углекислоту. Особенно активно процесс идет вблизи полюсов. При понижении температуры растворимость газа увеличивается.

Растения на свету поглощают СО2. В результате фотосинтеза выделяется кислород. Молодые быстрорастущие побеги – основная «фабрика» переработки.

Круговорот углерода в природе, схема это постоянный процесс изменения концентрации газа, поглощения и замещения его кислородом.

Как идет процесс в биосфере

Оболочка соединяет все известные сферы присутствием жизни. В ней постоянно идут обменные процессы. Химические реакции, превращение энергии поддерживают существование живых существ. Круговорот углерода в биосфере самый значительный и масштабный.

Газообмен гидросферы с атмосферой

Гидросфера обменивается углекислотой с воздушной оболочкой Земли. Не весь растворенный газ возвращается обратно. Часть усваивают бактерии верхних слоев. Ими питаются микроорганизмы. Создается пищевая цепочка. Элемент переходит из неорганического состояния в органическое.

Умершие живые существа опускаются на дно. Под давлением воды отложения спрессовываются. Глубинные микроорганизмы и бактерии перерабатывают ил.

Они влияют на круговорот элемента. Образуются полезные ископаемые: газ, нефть, уголь. Углерод перешел из органического состояния в неорганическое. В таком виде он сохраняется миллионы лет.

В верхних слоях содержится больше растворенного кислорода. В нижних – диоксида элемента и азота. Баланс неустойчив. При повышении температуры концентрация газов меняется. При изменении видового состава бактерий и микроорганизмов происходит перемещение кислорода вниз, азота и СО2 вверх. Газообмен с воздушной оболочкой нарушается.

Движение углерода в литосфере

Диоксид вещества через мелкие поры попадает в почву. Часть его растворяется водой или испаряется. Другая перерабатывается аэробными бактериями. Плодородный слой обогащается. В благоприятной среде развиваются растения. После отмирания гумус обогащается вновь. Наблюдается бесконечный переход: неорганика – органика – неорганика.

Слои утолщаются, уплотняются. Со временем под действием внешних факторов образуются осадочные полезные ископаемые. В их состав входит данное вещество. Нефть, газ, все виды угля, торф, известняк, мел надолго консервируют элемент в неорганическом состоянии.

Важно! Элемент в составе полезных ископаемых в круговороте временно не участвует! Цикл углерода не бывает абсолютно замкнутым.

Фотосинтез: особая часть большого кругооборота

Этот процесс по мощности соизмерим с ядерной реакцией. Более совершенного и экономного механизма производства соединений не существует.

Фотосинтез – часть круговорота элемента в биосфере. Он превращает неорганические вещества в органические. Насыщение атмосферы освобожденным кислородом регулирует газовый баланс. В результате этого процесса образуются питательные вещества: сахар, крахмал. Растения потребляют то, что сами производят.

Фотосинтез имеет две фазы: световую и темновую. Под воздействием солнечной энергии во время первой стадии происходит накопление клетками углекислого газа и воды. На этом этапе от молекулы воды отщепляется кислород. Происходит выделение газа в атмосферу.

Темновая стадия происходит без доступа солнечных лучей. Углекислота связывается. Дополнительными продуктами являются органические соединения (углеводы). Углекислый газ в природе одновременно является строительным материалом, а также источником питания, оздоравливающим планету веществом.

Схематическое изображение процесса

Важно! Круговорот карбона в природе – результат постоянных физических и химических превращений в биосфере Земли. Атомы С движутся во всех оболочках планеты. Это полностью отражает развитие жизни.

Основная часть вещества присутствует в составе диоксида. Из атмосферы она поглощается растениями. В процессе фотосинтеза происходит образование органических веществ и освобождение кислорода.

Схема круговорота углерода в природе отражает процесс обмена карбоном между всеми оболочками Земли. Оксид вещества (IV) из атмосферы поглощается верхними слоями гидросферы. Частично он испаряется, участвует в кругообороте воды в природе. Остальное количество перерабатывается организмами, оседает на дно. Образуются осадочные породы. Карбон на время исключается из кругооборота.

Человек разрабатывает месторождения полезных ископаемых, производит и сжигает топливо. Возвращенный в процесс диоксид снова попадает в атмосферу. Количество превышает допустимые нормы. Баланс нарушается. Биосфера не справляется с избыточным содержанием карбона. Включается механизм накопления.

Схема круговорота углерода в природе выделяет части вещества:

  • присутствующие в клетках живых растений,
  • попавшие в организм травоядных животных с пищей (выделяются при дыхании в виде СО2),
  • попавшие в организм плотоядных существ при потреблении травоядных (выделяются при дыхании),
  • отмершие части растений (при переработке организмами образуют осадочные породы).

Процесс химических и физических преобразований карбона последовательный и разомкнутый. Регулируется биосферой. Его скорость зависит от внешних факторов (температуры, влажности, скорости движения воздушных масс, деятельности человека).

Антропогенное влияние на процесс

Хозяйственная деятельность человека приводит к изменению содержания элемента в биосфере. Добыча полезных ископаемых, их переработка возвращает в кругооборот не участвующее количество вещества. Примеры того, как человечество влияет на процесс:

  • сжигание топлива дополнительно увеличивает выбросы диоксида С на 22 млрд. т/год,
  • изменение качественного состава пахотных земель увеличивает объем СО2 в атмосфере,
  • уменьшение площади лесов снижает эффективность фотосинтеза,
  • увеличение температуры вод Мирового океана увеличивает выделение углекислоты, снижает поглощение,
  • загрязнение окружающей среды нарушает газообмен.

Загрязнение вод Мирового океана приводит к гибели микроорганизмов, бактерий. Процесс усваивания вещества нарушен. Газообмен прекращен. СО2 перестает растворяться. Количество в атмосфере возрастает.

Схематично выразить, как человечество негативно воздействует на круговорот углерода, можно так:

Увеличение концентрации СО2 –&gt, ускоренный распад органических остатков –&gt, изменение климата –&gt, создание запасов СО2 –&gt, уменьшение восстановительной способности биосферы –&gt, дополнительные выбросы СО2.

Биосфера не отвечает увеличением собственной продуктивности на повышение концентрации диоксида углерода. Исследования показывают накопление запасов СО2 в атмосфере. Цикл углерода меняет сбалансированное течение. Последствия непредсказуемы.

В природе существуют круговороты веществ. Это цикличные незамкнутые процессы.

Значение углерода в природе велико. Этот элемент присутствует в составе любой живой молекулы, является строительным материалом и источником питания.

Круговорот углерода на планете

Цикл обращения углерода в природе

Вывод

Круговорот углерода в биосфере происходит с разной скоростью и количественным составом участвующих компонентов. Непродуманная хозяйственная деятельность человека приводит к катастрофическим последствиям. К ресурсам требуется относиться бережно.

Оцените статью
Добавить комментарий